

KGN COMAL

USER MANUAL

Author : Hans Otten

Version : 1.0 March 2025

Preface
KGN COMAL is an interpreter for the COMAL structured language.

The Dutch KIM Gebruikers Club (KGN) distributed a version of COMAL for the Elektor Junior.

Later this version was enhanced for the DOS65 system to Version 2.1 with disk file I/O and video

support. A KIM-1 version is not known.

In around 2015 several DOS65 and Elektor Junior computers were acquired. With it came a binary

and paper document of KGN COMAL: a COMAL DOS65 binary V2.1 and a compact manual.

On a Junior tape a binary of the first version of KGN COMAL was found.

In the Dutch KIM Kenner, the magazine published by the KGN club, two articles were published: a

Maze program in KGN COMAL and a small change to KGN COMAL v2.1, both written by Antoine

Megens.

Based upon the binaries a KIM-1 version is constructed in 2025. A partial disassembly of the I/O

parts and debugging led to a working KGN COMAL for the KIM-1. Finding the Junior dependencies

was the main job: the Junior routines OUTCH, GETCH and CRLF save X and Y registers, the KIM-1

is less caring.

This user manual was written in 2025, partially based upon the very compact Dutch manual from

1987 and the knowledge acquired during the port.

KGN COMAL has not been thoroughly tested yet on real hardware, the KIM-1 Simulator was a great

help during the port. Screenshots in this manual are from the Simulator.

Contents
Preface .. 2

1 Installation and First Steps ... 4

2 Saving and loading of COMAL programs ... 5

3 Syntax rules .. 6

4 Direct commands.. 8

5 Operators .. 9

6 Functions .. 10

7 Statements .. 12

8 Procedures .. 16

9 Flow of control ... 17

10 Internals .. 19

11 KGN COMAL Elektor Junior .. 20

12 KGN COMAL DOS65 ... 21

13 KGN COMAL KIM-1 .. 22

Appendix A DOS565 V2.1 ... 25

Appendix B Amazing Maze COMAL program .. 26

1 Installation and First Steps

KGN COMAL requires a Kim-1 or Junior with at least 16K RAM at $2000, and a (very simple)

terminal.

KGN COMAL is distributed in a ZIP archive, with folders for the applicable systems:

KGNCOMAL.ZIP

KGN COMAL Elektor Junior and KIM-1 are loaded from papertape: KGNCOMALKIM1.pap etc.

Load address is $2000, end address $47FF

Cold Start KGN COMAL at $3000. You will see a ‘)’ as prompt.

When COMAL is not responding you can press RESET or STOP.

A warm start is at $0000, the program is kept safe then. Type CLEAR to restore the housekeeping of

COMAL.

You can use Direct mode: enter valid COMAL commands and press Enter.

 Or you can use COMAL to execute programs consisting of multiple lines with one COMAL

statement per line via a RUN.

2 Saving and loading of COMAL programs

The Junior version of KGN COMAL has audio cassette tape Save and Load facilities.

Use is made of the Junior ROM routines, which are callable as subroutines.

For the KIM-1 version a not perfect solution is implemented, that requires use of the KIM-1 monitor

to save and load. See the KIM-1 chapter for that.

Nowadays using audio tape for saving and loading is not very practical. It is more convenient to use

the terminal emulator logging and replay facilities for text.

Teraterm for example has Log and Replay options to capture text coming from the KIM-1 via the

serial output etc and replay text from a text file into the KIM-1 serial input.

Save a COMAL program

Start logging in the terminal emulator, in COMAL LIST the program, and then close the logging.

Remove the unnecessary text from top and bottom of the text file and you have a perfect listing on the

PC as typed in on the KIM-1.

Load a COMAL program

The text file created by the Save method above is perfect to replay to COMAL.

But COMAL and the KIM-1 require some work on the text file and communication:

1. The text file needs to have CR line ends, not CRLF as DOS/Windows or LF as Unix/Linux.

This can be set for example with Notepad++ in Edit – EOL conversion.

2. The text file needs to be an ANSI text file (8 bit ASCII characters).

This can be set for example with Notepad++ in Encoding – ANSI

3. The terminal emulator needs to give the KIM-1 with COMAL some time to handle incoming

characters and Returns.

Set for example in Teraterm Line delay to 200 ms and Character delay to 20 ms.

3 Syntax rules

Uppercase

All text in a COMAL program is in uppercase, with the exception of characters in a string.

Variable names

A name is maximum 2 characters long. Starts with A-Z, second character A..Z or 0..9.

String variables have a ‘$’ attached.

Examples:

Real and integer A, B1, CC

String S, B1$

Data types

KGN COMAL has three basic datatypes: Integer, Real and String.

Integers are whole numbers, stored in 5 bytes and so can be very large.

Reals are floating point numbers with 9 digit precision.

A string is an array of characters, maximum 255 bytes long, with ANSI characters code 0-255.

Besides these basic datatypes KGN COMAL also knows multidimensional integer arrays, see the

DIM statement.

Booleans

A true is represented by the number 1, a false by number zero.

Expressions

<expression> can be a <numeric expression> or a <String expression>

A <numeric expression returns a numeric value, integer or real.

A <string expression> returns a string>

<numeric constant> is a decimal representation of a number.

<numeric string constant> is a string of characters enclosed in double quotes.

Examples

Integer A := 1

Real R := 0.5

String S := “This is a string”

Variables are implicit created when they are found in a program, no explicit declaration.

The type is determined by assignment. COMAL is very tolerant to mixing reals and integers,

conversion and rounding takes place automatically.

Example

)LIST

 10 A:=32767

 20 B:=49999

 30 C:=100000

 40 PRINT A;" ";B

 50 PRINT C

 60 D:=10000

 70 PRINT D

 80 D:=10*D

 90 PRINT D

 100 D:=10*D

 110 PRINT D

 120 D:=D*10

130 PRINT D

)RUN

32767 49999

100000

100000

1000000

10000000

100000000

Program lines and Editing.

Each COMAL statement in a program needs to be a line, one at a time.

Each line has a <line number>, which are only for entering and listing the program.

A line is entered by typing the line number followed by the COMAL command, and entered via

Return. The only line editing is using BACKSPACE to erase the last entered characters.

A line can be removed by typing just the line number.

See the Direct Commands: LIST, DELETE, RENUMBER and LIST for more information.

<line number> is an integer in the range 1-63999

Constants

Numeric constants can be entered as a string of numbers or in scientific notation:

200000 and 2E+5 are identical.

A string constant is a string of characters enclosed in double quotes.

Only in strings lower case (and any control character) is allowed.
“This is a valid COMAL string”

4 Direct commands

Most COMAL statements can be used in direct mode, one at a line.

Direct commands, not to be used in a program, for managing the program lines are:

DELETE

DELETE <line number 1> - <line number 2>

Deletes line from the program.

RENUMBER

RENUMBER [<line number>[, <step>]]

Renumbers lines. The first line becomes <line number>, each following line number is incremented in

incremented by <step>.

IF <step> is not specified the step increment is 10.

If <line number> is not specified the first line is 10, and the increment 10.

LIST

Prints the program.

LIST without arguments shows the whole program.

LIST[<line number 1>][– <line number 2>]

LIST <line number 1> shows the program from <line number 1> till the end.

LIST - <line number 2> shows the program from the <line number 1> till <line number 2>

CLEAR

Remove all variables and does a RESTORE.

NEW

Removes the whole program and clears all variables.

See also the RUN, CONT, command.

5 Operators

Operators are part of expressions.

<expression 1 > <operator> <expression 2>

There are two types of expressions in KGN COMAL:

<numeric expressions> contain constants, variables, numeric functions, used with parentheses.

<string expression> contain string of characters.

Sign

+

-

Numeric

+ sum

- subtract

^ power off

* multiplication

/ division

< less than

> greater than

Logical <expression1> <logical operator> <expression2>

AND result 1 if both of the expressions not equal to zero

OR result 1 if one of the expressions not equal to zero

String

+ concatination

6 Functions

Result := <function(<argument>)

Arithmetic functions

NOT

Result is 1 if argument not equal zero

SGN

-1 for negative argument, +1 for positive argument

INT

Integer value of real argument

ABS

Absolute value of argument

FRE

Performs garbage collect and result is number of free memory locations

Note that the number may be negative for large amount of RAM. Add 65536 to get the real free

memory.

POS

Current position in the line of output

SQR

Square root

RND

If argument < 0 the the result is a number between 0 and 1

If argument > 0 the the result is a random number between 0 and 1

If argument = 0 the the result is the previous random number

LOG

Natural logarithm

EXP

e to the power of argument

COS

Cosinus of argument in radials

SIN

Sinus of argument in radials

TAN

Tangent of argument in radials

ATAN

Arc Tangent of argument in radials

String functions

LEN

Length of string

STR$

Converts numeric argument to string

VAL

Converts string to number. Read from the start of the string until non-numeric

ASC

Result is ASCII code of first character of string argument

CHR$

result is string of 1 character with ASCII code of the numeric argument

LEFT$

LEFT$(string argument, number argument)

Result is string with (number argument) characters from the left of string argument

RIGHT$

RIGHT$(string argument, number argument)

Result is string with (number argument) characters from the right of string argument

MID$

MID$(string argument, number argument 1, number argument 2)

Delivers a string with number argument 1 characters starting at number argument 2.

Example
)10 S$:= “1234567890”

)20 M$:= MID$(s$,3,5)

)30 PRINT M$

)RUN

34567

I/O functions

USR

The number argument is placed in the floating point accumulator.

A CALL 10 is executed. On location 10 a JMP to a user supplied machine routine is to be placed.

The result of the user supplied routine has to be returned in the floating point accumulator.

An RTS returns to COMAL.

Note: the location of the floating point accumulator is unknown!

PEEK

The result is the content of the memory location at <number argument>.

7 Statements

Assignment

<variable> := <expression>

Only <String expressions> can be assigned to <string variables>

See the conversion functions like VAL and ASC for type conversion.

COMAL is very tolerant when numeric types, reals and integers are concerned, you can mix them

freely. Reals are rounded automatically to integers.

//

A line beginning with // is ignored by COMAL and can be used as comment.

PRINT

PRINT [,;[<argument 1>[,;]argument 2] ...[.;]

Prints the arguments on the terminal. Any expression is valid.

A comma will tabulate the output in multiples of 16 characters.

A semicolon at the end prevents the CRLF that otherwise ends the PRINT.

A ‘?’ is also interpreted as PRINT.

Example:

)PRINT;10

10

)PRINT ,10

 10

)PRINT ;10,I

10 10

)PRINT I

10

)PRINT I;I

1010

)PRINT I,I

10 10

)PRINT ,I,I

 10 10

)PRINT "Text ",I

Text 10

)PRINT I/3

3.33333333

TAB

TAB(<arithmetic expression>)

Prints spaces to position <arithmetic expression>.

Only usable in a PRINT statement,

SPC

SPC(arithmetic expression>

Prints <arithmetic expression>spaces.

Only usable in a PRINT statement,

LABEL:

LABEL: <string expression>

A label on a line is a line where you can jump to with a GOTO.

GOTO

GOTO <label>

ONERR GOTO

ONERR GOTO <label>

If an error occurs during a program control is resumed at the ON ERR GOTO line, if found.

Here you can handle the error. End this routine with RESUME.

In memory location 222 you find the error code. In memory location 218 (low byte) and 219 (high

byte) you find the line number.

 In the following list you find the error belonging to an error code.

 0 NEXT WITHOUT FOR

 16 SYNTAX

 22 ENDPROC WITHOUT EXEC

 42 OUT OF DATA

 53 ILLEGAL QUANTITY

 69 OVERFLOW

 77 OUT OF MEMORY

 90 UNDEF' PROCEDURE

107 BAD SUBSCRIPT

120 REDIM'D ARRAY

133 DIVISION BY ZERO

163 TYPE MISMATCH

176 STRING TOO LONG

191 BAD FLOW OF CONTROL

224 UNDEF'D FUNCTION

225 BREAK INTERRUPT

ONERR can be switched off with a POKE 216,0

RESUME

Use this at the end of an ONERR routine. Program execution will resume at the line the error

occurred.

RUN

RUN [<label>

Program execution starts at the line with LABEL : <label>>

If no label is specified execution starts at the first line of the program.

Note that RUN first does perform a ‘compilation’ of the program to optimize it.. If execution stops

abnormally the listing is damaged. Enter the command RESTORE to repair the listing.

STOP

Causes a BREAK in the program. Use END. to repair the listing. Use CONT to resume the program.

CONT

Resumes program execution after a STOP or a BREAK.

END.

Stops the program and restores the listing. Use END. to prevent program execution going into PROC

statements.

WAIT

WAIT <arithmetic expression>

Causes a delay. A numer of 125 is about 1 second.

DEF FN

DEF FN <variable 1> [variable 2 .. n>]

INPUT

INPUT <string>

Reads a string from the console and stores it in <string> until a Return is entered.

To read a number use this:

INPUT S$

A := VAL(S$).

CTRL-C followed by Return causus a BREAK, resume with CONT.

GET

GET <string>

Reads form the console one character, no RETURN required.

ctrl-c BREAKS.

DIM

DIM <var>(<arithmetic expression 1> [..<arithmetic expression N>

Defines a multidimensial array of numbers with name <var>.

<arithmetic expression N> defines the number of elements +1 in dimension N.

A dimension can not exceed 32767 elements.

An array is referred to as:

<var>(number, number ...).

An array is zero based!

Example
)10 DIM AR(10,10)

)20 AR(10,10) := 5

)30 AR(0,0) := 4

)40 PRINT AR(10,10)

)50 PRINT AR(0,0)

)RUN

5

4

DATA

DATA constant [.. constant]

Local data in a program. Can be read with READ.

Constant can be a number or a string

READ

READ <variable>

Reads the next constant into <variable> from the DATA.

RESTORE

Allows to read the DATA from the beginning.

POKE

POKE <memory location>, <value>

Stores the <value> (0.255) into <memory location> 0 .. 65535

CALL

CALL <memory location>

Executes a machine language routine at <memory location (0..65535) >

Return to COMAL via RTS.

RES

RES(<procedure>, <var1> .. <varN>

Executes <procedure>, the result is varN. varN can not be a string.

LOAD

LOAD, <tape ID>

Loads a COMAL program from audio tape, <tape ID> is the tape ID used by the Junior as filename.

A tape ID is 1 to 254.

SAVE

SAVE, <tape ID>

Savess a COMAL program from audio tape, <tape ID> is the tape ID used by the Junior as filename.

A tape ID is 1 to 254.

8 Procedures

A procedure is a subroutine with a name.

A procedure is called with EXEC.

<block of statements> is one or more program lines.

PROC – ENDPROC

PROC <string expression>, [var1 ...[varN]]

 <block of statements>

ENDPROC

EXEC

EXEC <string expression>, [var1 ...[varN]]

<string expression>, usually a string constant.

[var1 ...[varN]] is a list of variables that are copied to variables in the PROCedure.

The local variables are copied back to the calling variables.

Note that PROCedures should not be reached at program execution. Place them at the end of a

program and end the program before the PROC with END.

Example of a PROCEDURE:

 10 X:=1

 20 Y:=2

 30 S:=0

 40 PRINT "S= ";S

 50 EXEC: "ADD",X,Y,Z

 60 PRINT "S AFTER ADD = ";S

 70 END.

 100 PROC "ADD",X,Y,S

 110 S:=X+Y

 120 ENDPROC

)RUN

S= 0

S AFTER ADD = 3

)

9 Flow of control

<block of statements> is one or more program lines.

<boolean expression> is an arithmetic expression that delivers a Boolean result, TRUE (not zero) or

FALSE (zero).

IF-THEN-ELSE-ENDIF

IF <boolean expression> THEN

 <block of statements 1>

[ELSE

 <block of statements 2>]

ENDIF

If <boolean expression is not zero (TRUE) <block of statements 1> is executed and the program

continues after the line with ENDIF.

The ELSE part is executed if <arithmetic expression is zero (FALSE).

ELSE is optional.

WHILE-DO:-ENDWHILE

WHILE <boolean expression> DO

 <block of statements>

ENDWHILE

If <boolean expression is not zero (TRUE) <block of statements 1> is executed and the program

continues, in a loop, at the WHILE statement.

The loop is executed 0 or more times.

REPEAT-UNTIL

REPEAT

 <block of statements>

UNTIL <boolean expression>

The block of statements is executed.

If <boolean expression> is FALSE the program continues in a loop at REPEAT, else at the next line.

The loop is executed 1 or more times.

FOR-TO-STEP-ENDFOR

FOR <variable> := <arithmetic expr 1> TO <arithmetic expr 2> [STEP <arithmetic expr 3>]

 <block of statements>

ENDFOR

Variable get the value of <arithmetic expr 1>. If the variable is less than arithmetic expr 1 the block of

statements is executed, the variable incremented with the step <arithmetic expr 3> and the program

repeats the block until the variable is greater than the <arithmetic expr 1>.

STEP is optional, if omitted the step increment is 1.

CASE .. ENDCASE

CASE var

 WHEN value[..value]

 <block of statements>
 [WHEN value[..value]

 <block of statements>]
 .

 .

 OTHERWISE

 <block of statements>
ENDCASE

This construct seems not to work on KGN COMAL, Error message ENDPROC WITHOUT EXEC

10 Internals

Memory layout:

Zeropage usage

$0000 - $000D

$0067 - $0080

$00AF - $00CC

Keyboard buffer

$0200-$02FF

Memory above $2000

$2000 - $47FF COMAL interpreter

$4800 – highest RAM address for COMAL program and variables

COMAL searches with a non-destructive search for the highest RAM address at Cold start.

The first free location is stored at address $AF (low) and $B0 (high).

The highest RAM address + 1 is stored at $73, 74

To limit COMAL to a lower upper RAM address change this in COMAL, for example with upper

address $8000

4195 A0 00 LDY #$00

4197 A9 80 LDA #$80

11 KGN COMAL Elektor Junior

The KGN COMAL for JUNIOR has partially been disassembled to aid the port to KIM-1.

The tape load/save routines extract from this disassembly is interesting:

;

; Load/save routines JUNIOR KGN COMAL

;

28B0 20 D0 28 JSR L28D0 ; dos65 rewritten

28B3 A5 67 LDA $67 ; start of memory

28B5 8D 70 1A STA $1A70 ; SAL JUNIOR

28B8 A5 68 LDA $68

28BA 8D 71 1A STA $1A71 ; SAH JUNIOR

28BD A5 69 LDA $69 ; end of memory

28BF 8D 72 1A STA $1A72 ; EAL JUNIOR

28C2 A5 6A LDA $6A ;

28C4 8D 73 1A STA $1A73 ; EAH JUNIOR

28C7 20 76 14 JSR $1476 ; dump to tape and print 'READY'

28CA B0 01 BCS L28CD ; something went wrong?

28CC 60 RTS

28CD 4C 2A 24 L28CD JMP L242A

;

; get ID, must be 01-FE

;

28D0 20 F5 28 L28D0 JSR L28F5 ; read a number

28D3 E0 00 CPX #$00

28D5 F0 F6 BEQ L28CD ; error

28D7 E0 FF CPX #$FF

28D9 F0 F2 BEQ L28CD ; error

28DB 8E 79 1A STX $1A79 ; store at Junior tape ID

28DE 60 RTS

;

; load routine from tape

;

28DF 20 D0 28 JSR L28D0

28E2 20 96 14 JSR $1496 ; call Junior and print 'READY'

28E5 B0 E6 BCS L28CD ; error

28E7 A5 FA LDA $FA ; start address to Comal JUNIOR

28E9 85 69 STA $69

28EB A5 FB LDA $FB ; JUNIOR

28ED 85 6A STA $6A

28EF 20 6C 26 JSR L266C ; find end of program loaded

28F2 4C 3C 24 JMP L243C

12 KGN COMAL DOS65

DOS65 is a disk operating system. KGN COMAL has been ported to a DOS65 program.

The COMAL interpreter is the same as the Junior of KIM-1 version with some extras:

DOS65 video statements

INVERSE

CLS

ON

OFF

File I/O statements

DOS

CREATE

OPEN

CLOSE

DEL

CHAIN

COMAL statement

AUTO

13 KGN COMAL KIM-1
These are the adaptations made to KGN COMAL JUNIOR

The tape I/O routines have been patched so that the KIM-1 LOADT and SAVET is called.

This drops back to the KIM Monitor. See the source what to do and do a Warm start at $0000.

; KIM-1 Comal patch routines

;

; Hans Otten, March 2025

;

;

; KIM-1 ROM and 6530 addresses

;

SAD = $1740 ; 6530 A DATA

PADD = $1741 ; 6530 A DATA DIRECTION

SBD = $1742 ; 6530 B DATA

PBDD = $1743 ; 6530 B DATA DIRECTION

CLK1T = $1744 ; DIV BY 1 TIME

CLK8T = $1745 ; DIV BY 8 TIME

CLK64T = $1746 ; DIV BY 64 TIME

CLKKT = $1747 ; DIV BY 1024 TIME

CLKRDI = $1747 ; READ TIME OUT BIT

CLKRDT = $1746 ; READ TIME

; ** MPU REG. SAVX AREA IN PAGE 0 **

PCL = $EF ; PROGRAM CNT LOW

PCH = $F0 ; PROGRAM CNT HI

PREG = $F1 ; CURRENT STATUS REG

SPUSER = $F2 ; CURRENT STACK POINTER

ACC = $F3 ; ACCUMULATOR

YREG = $F4 ; Y INDEX

XREG = $F5 ; X INDEX

; ** KIM FIXED AREA IN PAGE 0 **

CHKHI = $F6

CHKSUM = $F7

INL = $F8 ; INPUT BUFFER

INH = $F9 ; INPUT BUFFER

POINTL = $FA ; LSB OF OPEN CELL

POINTH = $FB ; MSB OF OPEN CELL

TEMP = $FC

TMPX = $FD

CHAR = $FE

MODE = $FF

; ** KIM FIXED AREA IN PAGE 23 **

CHKL = $17E7

CHKH = $17E8 ; CHKSUM

SAVX = $17E9 ; (3-BYTES)

VEB = $17EC ; VOLATILE EXEC BLOCK (6-B)

CNTL30 = $17F2 ; TTY DELAY

CNTH30 = $17F3 ; TTY DELAY

TIMH = $17F4

SAL = $17F5 ; LOW STARTING ADDRESS

SAH = $17F6 ; HI STARTING ADDRESS

EAL = $17F7 ; LOW ENDING ADDRESS

EAH = $17F8 ; HI ENDING ADDRESS

ID = $17F9 ; TAPE PROGRAM ID NUMBER

; ** INTERRUPT VECTORS **

NMIV = $17FA ; STOP VECTOR (STOP=1C00)

RSTV = $17FC ; RST VECTOR

IRQV = $17FE ; IRQ VECTOR (BRK=1C00)

;

; KIM-1 ROM addressses

;

RST = $1C22 ; hardware reset

START = $1C4F ; start KIM-1 processor, KDB selection

GETCH = $1E5A ; GETCH (serial, with hardware echo)

OUTCH = $1EA0 ; OUTCH (serial)

CRLF = $1E2F

 .org $2553

 JSR KGETCH

 .org $28B0

 JSR L28D0 ; get tape ID

 LDA $67 ; start of memory

 STA $17F5 ; SAL KIM-1

 LDA $68

 STA $17F6 ; SAH KIM-1

 LDA $69 ; end of memory

 STA $17F7 ; EAL KIM-1

 LDA $6A ;

 STA $17F8 ; EAH KIM-1

 JMP $1800 ; dump to tape and return to monitor

 BCS L28CD ; something went wrong?

 RTS

L28CD JMP $242A

;

; get ID, must be 01-FE

;

 JSR $28F5 ; read a number

 CPX #$00

 BEQ L28CD ; error

 CPX #$FF

 BEQ L28CD ; error

 STX $17F9 ; store at KIM-1 tape ID

 RTS

;

; load routine from tape

;

L28D0 JSR L28D0 ; get tape ID

 JMP $1873 ; load from tape and return to KIM monitor

 BCS L28CD ; manually with KIM-1 monitor:

 LDA $FA ; 17ED VEB + 1 to $69

 STA $69

 LDA $FB ; 17EE VEB +2 to $6A

 STA $6A ; G 28EF from KIM monitor

 JSR $266C ; find end of program loaded

 G here from KIM monitor

 JMP $243C

 .org $2C11

 JSRKGETCH

 .org $4248

 BIT SAD

 .org $424D

 BIT SAD

 .org $425C

 ; STA IRQV

 .org $4261

 ; STA IRQV+1

 .org $47FA

 JSR KOUTCH

 .org $47F5

 JSR KCRLF

 .org $4275

KGETCH STX $4391

 STY $4392

 JSR GETCH

 LDX $4391

 LDY $4392

 RTS

KOUTCH STA $4393

 STX $4394

 STY $4395

 JSR OUTCH

 LDA $4393

 LDX $4394

 LDY $4395

 RTS

KCRLF STX $4391

 STY $4392

 JSR CRLF

 LDX $4391

 LDY $4392

 RTS

 .end

Appendix A DOS565 V2.1

Appendix B Amazing Maze COMAL program

